- When the camera faces directly downward at an angle θ of -90∘ and altitude of A , the GCC width W_c & height H_c are given by: \circ Where w_i and h_i are the image width & height
- When θ is not −90°, the drone needs to be placed at an **offset** for the camera to cover the same
- ground area as a down-facing camera • Horizontal and vertical offset ϕ_x and ϕ_y are given by:

$$
\phi_x = \frac{W_c}{2} + A * tan(90 - abs(\theta) - \frac{\alpha}{2})
$$

$$
\phi_y = \frac{H_c}{2} + A * tan(90 - abs(\theta) - \frac{\beta}{2})
$$

 \triangleright Where θ is the camera tilt angle (-90° to 0°) from the horizontal, α and β are the camera horizontal and vertical **field of view** (FOV)

- Using DRL for close-distance inspection stage maneuvers for confirmation and more details
- **Double Deep Q-Learning (DDQN) model with a memory tree** Advantages: decoupled action selection and value estimation, more dynamic due to less
- overestimation, and learns better from past episodes Model considers the current detection as an environmental state value driven by the reward
- function for close-up inspection and better detection, given by:
- **Reward Components** DRL reward function $s_x * s_y$ a. Bounding box size ratio R_s calculated by: $R_s = \frac{1}{2}$ $w_i * h_i$
	- controls flight in z direction, coefficient of k_{s} b. Bounding box distance ratios R_x and R_y from center calculated by:
	- controls drone flight in x and y $R_y = \frac{Diff_y}{h_i/2}$ $R_x = \frac{Diff_x}{w_i/2}$ directions, coefficients of k_x and k_y

GCA is **the ground area** that a single drone can patrol on a full charge Calculated from the size and number of **Ground Coverage Cells (GCC)**, which is the **projection** of the ground cell to a camera image

- Current wildfire detection systems are ineffective
- \circ Stationary camera and sensor networks, satellite
- \circ Limitations: adverse weather, limited view angles, uncertainty due to distance, speed of detection
- **Drones/UAVs require** significant human efforts due to **manual operations**, impacting their efficiency and restricting usage \circ Manual path planning, human piloting, no autonomous detection

Background

- 66k fires burned **7.5M acres**
- nationwide in 2022 NIFC Annual total cost of wildfires in the U.S. ranges from \$394 to **\$893 billion** - Congress JEC

A2D2: An AI-driven Autonomous Drone-based Detection Network for Wildfires

Calvin Zhou, Sophia Yang

Introduction and Problem

Previous Work

- To traverse the GCA, an Energy- \overline{A} Aware Spiral (**E-Spiral**) CPP model is employed
	- Advantages: guarantees **complete coverage**, allows for continuous flight as the **rotation** of the drone accounts for all areas
- Starts at center GCC and returns to the center for charging (base placed at the center for a single drone) after completing the path
- The Ground Coverage Area (GCA) for one drone given its **max** battery **flight distance** is constructed from the number of GCCs
	- Determines patrol stage range
- Deep Computer Vision (DCV) for wildfire detection YOLOv3, v5, v7, v8, Reduce-VGGnet with optimized CNN, FireDETN, Efficient-B5 and DenseNet-201
- Deep Reinforcement Learning (DRL) for object tracking
- Actor-Critic methods, Deep Deterministic Policy Gradient (DDPG) Coverage Path Planning (CPP) for UAV flight paths
- Motion planning algorithms, path planning for polygon areas, Waypoint planning, cellular decomposition, coverage trajectories for irregular fields, Energy-Aware CPP
- **No previous work has integrated all 3** into a single **drone system** that automates the whole operational process to deliver effective early wildfire detection with minimal human input

Engineering Goal

- Design and implement **a system fully automating the 5-stage** operational **process** for **drone-based wildfire detection**
- Develop **algorithms** and **models** required in the system flowchart steps
- Conduct **end-to-end simulation tests** to validate the system design

- Implemented 5 DCV models by conducting training, validation, and testing on the **FLAME** open wildfire dataset
	- YOLOv8, Faster R-CNN, DETR, EfficientDet, and RetinaNet, evaluated using mean average precision calculated at an Intersection over Union (IoU) threshold of 0.50 (**mAP50**)
	- mAP50 used to select model that is more stable and **consistent** to be trained further with transfer learning
- **YOLOv8** selected as best model over Faster R-CNN due to speed (15 ms vs 80 ms per inference) despite lower mAP50
	- Faster inference speed reduces training time for the DRL model

Methods and Procedures

Estimation of Ground Coverage Area (GCA) Size

Problem Definition

• Saydirasulovich, S. N., Mukhiddinov, M., Djuraev, O., Abdusalomov, A., & Cho, Y.-I. (2023). An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images. Sensors, 23(20), 8374. Cabreira, T. M., Franco, C. D., Ferreira, P. R., & Buttazzo, G. C. (2018). Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric Applications. IEEE Robotics and Automation Letters, 3(4), 3662–3668. https://doi.org/10.1109/LRA.2018.2854967

admin app.

• Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2017, May 15). AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. arXiv.Org. https://arxiv.org/abs/1705.05065v2 Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P. Z., & Blasch, E. (2021). Aerial imagery pile burn detection using deep learning: The FLAME dataset. Computer Networks, 193, 108001. https://doi.org/10.1016/j.comnet.2021.108001

Coverage Path Planning (CPP) for Patrol Stage Multi-Drone Network

• Transition from simulation to field tests with support from CAL Fire and local fire departments

Deep Reinforcement Learning (DRL) for Inspection Stage Flight Control

Consists of **5 modules**: controller, patrol path planning, inspection path planning, detection, and alerting

Deep Computer Vision (DCV) for Wildfire Detection

System Architecture

Results

Selected References

Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V., & Scaramuzza, D. (2023). Championlevel drone racing using deep reinforcement learning. Nature, 620(7976), 982–987. https://doi.org/10.1038/s41586-023-06419-4

van Hasselt, H., Guez, A., & Silver, D. (2016, February 12). Deep Reinforcement Learning with Double Qlearning. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI '16: The 13th AAAI Conference on Artificial Intelligence.

Summary

A2D2 enables a drone to emulate the heuristic operational procedure of a human pilot, involving searching, closely flying over for confirmation, and sending alerts

The system is a breakthrough innovation that significantly elevates the efficiency and effectiveness of early wildfire detection

Future Work

Continue developing this system to make it a modularized platform extensible to other tasks and use cases like post-fire monitoring, remote sensing, geo-mapping, search and rescue, etc.

Conclusion

Wildfire Detection Tests

Created simulation environment for testing using Microsoft AirSim (open-source simulator built on Unreal Engine) with virtual assets Below is a table of all 5 DCV models tested on FLAME with mAP50 evaluation and their unique features

Selected YOLOv8 had a mAP50 of **0.913** with the fastest detection speed of **15ms**, a fraction of the next fastest, Faster R-CNN After transfer learning, the selected YOLOv8 was able to detect with a mAP50 of **0.90**, comparable to the performance on FLAME

YOLOv8 F1-Conf. Curve

Above is a screenshot of the full system in action with the functional take-off, spiral patrol, detection, and close inspection process

End-to-End Experimental Tests

Test setup: Placing 100 wildfires at random locations in the GCA and evaluating end-to-end detection process for each fire from take-off to alert.

At the right is a table of the system's results from the tests \circ Inspection path planning used DDQN model which trained faster than A2C with similar results

Acknowledgments: Bradley Fulk for mentorship, CAL Fire, US Forest Service, San Diego FD, Menlo Park FD, and Orange County FD for valuable insight and advice

(2)

