A2D2: An AI-driven Autonomous Drone-based Detection Network for Wildfires

Introduction and Problem

Background

- 66k fires burned 7.5M acres nationwide in 2022 - NIFC
- Annual total cost of wildfires in the U.S. ranges from \$394 to \$893 billion - Congress JEC

Problem Definition

- Current wildfire detection systems are ineffective
- $^{\circ}\,$ Stationary camera and sensor networks, satellite
- Limitations: adverse weather, limited view angles, uncertainty due to distance, speed of detection
- Drones/UAVs require significant human efforts due to manual operations, impacting their efficiency and restricting usage
 Manual path planning, human piloting, no autonomous detection

Previous Work

- Deep Computer Vision (DCV) for wildfire detection
 YOLOv3, v5, v7, v8, Reduce-VGGnet with optimized CNN, FireDETN, Efficient-B5 and DenseNet-201
- Deep Reinforcement Learning (DRL) for object tracking
- Actor-Critic methods, Deep Deterministic Policy Gradient (DDPG)
 Coverage Path Planning (CPP) for UAV flight paths
- Motion planning algorithms, path planning for polygon areas, Waypoint planning, cellular decomposition, coverage trajectories for irregular fields, Energy-Aware CPP
- No previous work has integrated all 3 into a single drone system that automates the whole operational process to deliver effective early wildfire detection with minimal human input

Engineering Goal

- Design and implement a system fully automating the 5-stage operational process for drone-based wildfire detection
- Develop **algorithms** and **models** required in the system flowchart steps
- Conduct end-to-end simulation tests to validate the system design

back to base?

admin app.

(straight-line) path

Calvin Zhou, Sophia Yang

Methods and Procedures

Estimation of Ground Coverage Area (GCA) Size GCA is the ground area that a single drone can patrol on a full charge Calculated from the size and number of Ground Coverage Cells (GCC),

which is the **projection** of the ground cell to a camera image • When the camera faces directly downward at an angle θ of -90° and altitude

(2)

- of A, the GCC width W_c & height H_c are given by: \circ Where w_i and h_i are the image width & height
- When θ is not -90°, the drone needs to be placed at an offset for the camera to cover the same ground area as a down-facing camera
- ground area as a down-facing camera
 Horizontal and vertical offset \$\phi_x\$ and \$\phi_y\$ are given by:

$$\phi_x = \frac{W_c}{2} + A * \tan(90 - abs(\theta) - \frac{\alpha}{2})$$

$$\phi_y = \frac{H_c}{2} + A * \tan(90 - abs(\theta) - \frac{\beta}{2})$$

• Where θ is the camera tilt angle (-90° to 0°) from the horizontal, α and β are the camera horizontal and vertical **field of view** (FOV)

Coverage Path Planning (CPP) for Patrol Stage

- To traverse the GCA, an Energy-Aware Spiral (**E-Spiral**) CPP model is employed
 - Advantages: guarantees
 complete coverage, allows for
 continuous flight as the
 rotation of the drone accounts
 for all areas
- Starts at center GCC and returns to the center for charging (base placed at the center for a single drone) after completing the path
- The Ground Coverage Area (GCA) for one drone given its max battery flight distance is constructed from the number of GCCs
 - Determines patrol stage range

gorithm 2 E-Spiral Coverage Path Planning
Inputs: Drone max flight distance D_m , Ground coverage
cell width W_c and height H_c
Output: A list of waypoints for E-Spiral CPP path
Set waypoints list $wps \leftarrow [$]
Append starting waypoint $(\phi_x, \phi_y, 0)$ to wps
Set flight distance $d \leftarrow 0$
Set direction pointer $i \leftarrow 0$
while $d < d_m$ do
$(x, y, z) \leftarrow$ last element in wps
if $i = 0$ then
$x_1 \leftarrow x, y_1 \leftarrow y - H_c, d \leftarrow d + H_c$
else if $i = 1$ then
$x_1 \leftarrow x - W_c, y_1 \leftarrow y, d \leftarrow d + W_c$
else if $i = 2$ then
$x_1 \leftarrow x, y_1 \leftarrow y + H_c, d \leftarrow d + H_c$
else if $i = 3$ then
$x_1 \leftarrow x + W_c, y_1 \leftarrow y, d \leftarrow d + W_c$
end if
if (x_1, y_1, A) not in wps then
Append (x_1, y_1, A) to wps
$i \leftarrow 0$ if $i = 3$ else $i + 1$
else
$i \leftarrow 3$ if $i = 0$ else $i - 1$
end if
end while
Return: wps

Deep Reinforcement Learning (DRL) for Inspection Stage Flight Control

- Using DRL for close-distance inspection stage maneuvers for confirmation and more details
- Double Deep Q-Learning (DDQN) model with a memory tree
 Advantages: decoupled action selection and value estimation, more dynamic due to less
- overestimation, and learns better from past episodes
 Model considers the current detection as an environmental state value driven by the reward
- function for close-up inspection and better detection, given by:
- **Reward Components** DRL reward function a. Bounding box size ratio R_s calculated by: $R_s = \frac{s_x * s_y}{w_i * h_i}$ Reward = k controls flight in z direction, coefficient of k
 - controls flight in z direction, coefficient of k_s b. Bounding box distance ratios R_x and R_y from center calculated by: controls drone flight in x and y directions, coefficients of k_x and k_y $R_x = \frac{Diff_x}{w_i/2}$ $R_y = \frac{Diff_y}{h_i/2}$

Deep Computer Vision (DCV) for Wildfire Detection

- Implemented 5 DCV models by conducting training, validation, and testing on the FLAME open wildfire dataset
 - YOLOv8, Faster R-CNN, DETR, EfficientDet, and RetinaNet, evaluated using mean average precision calculated at an Intersection over Union (IoU) threshold of 0.50 (mAP50)
 - mAP50 used to select model that is more stable and consistent to be trained further with transfer learning
- YOLOv8 selected as best model over Faster R-CNN due to speed (15 ms vs 80 ms per inference) despite lower mAP50
 - Faster inference speed reduces training time for the DRL model

System Architecture
Consists of 5 modules: controller, patrol path planning, inspection path planning, detection, and alerting

Results

Wildfire Detection Tests

Created simulation environment for testing using Microsoft AirSim (open-source simulator built on Unreal Engine) with virtual assets
Below is a table of all 5 DCV models tested on FLAME with mAP50 evaluation and their unique features

1	YOLOv8	Faster R-CNN	DETR	EfficientDet	RetinaNet
0	0.913	0.916	0.748	0.663	0.763
ion	Single-shot with modified CSPDarknet 53 with self-attention mechanism and feature pyramid network (FPN)	Two-shot with a region of interest (ROI) pooling layer and region proposal network (RPN)	Transformer on CNN backbone and feed-forward network (FFN)	Single-shot with weighted bi-directional feature pyramid network (BiFPN) scaling method	Single-shot with focal loss function to address class imbalance during training

Selected YOLOv8 had a mAP50 of 0.913 with the fastest detection speed of 15ms, a fraction of the next fastest, Faster R-CNN
After transfer learning, the selected YOLOv8 was able to detect with a mAP50 of 0.90, comparable to the performance on FLAME

YOLOv8 F1-Conf. Curve

End-to-End Experimental Tests

• **Test setup:** Placing 100 wildfires at random locations in the GCA and evaluating end-to-end detection process for each fire from take-off to alert.

• Above is a screenshot of the full system in action with the functional take-off, spiral patrol, detection, and close inspection process

 At the right is a table of the system's results from the tests

 Inspection path planning used DDQN model which trained faster than A2C with similar results

Altitude, A	80 ft (from Grid Search)	
Camera angle, θ	45° (from Grid Search)	
Detection Rate	0.99	
DDQN Loss	10.634	

Conclusion

Summary

• A2D2 enables a drone to emulate the heuristic operational procedure of a human pilot, involving searching, closely flying over for confirmation, and sending alerts

• The system is a breakthrough innovation that significantly elevates the efficiency and effectiveness of early wildfire detection

Future Work

 Transition from simulation to field tests with support from CAL Fire and local fire departments

• Continue developing this system to make it a modularized platform extensible to other tasks and use cases like post-fire monitoring, remote sensing, geo-mapping, search and rescue, etc.

Selected References

Saydirasulovich, S. N., Mukhiddinov, M., Djuraev, O., Abdusalomov, A., & Cho, Y.-I. (2023). An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images. Sensors, 23(20), 8374.
Cabreira, T. M., Franco, C. D., Ferreira, P. R., & Buttazzo, G. C. (2018). Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric Applications. IEEE Robotics and Automation Letters, 3(4), 3662–3668. https://doi.org/10.1109/LRA.2018.2854967
Kaufmann, F., Bauersfeld, L., Loguercio, A., Müller, M., Koltun, V., & Scaramuzza, D. (2023). Champion.

• Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V., & Scaramuzza, D. (2023). Championlevel drone racing using deep reinforcement learning. Nature, 620(7976), 982–987. https://doi.org/10.1038/s41586-023-06419-4

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2017, May 15). AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. arXiv.Org. https://arxiv.org/abs/1705.05065v2
Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P. Z., & Blasch, E. (2021). Aerial imagery pile burn detection using deep learning: The FLAME dataset. Computer Networks, 193, 108001. https://doi.org/10.1016/j.comnet.2021.108001

van Hasselt, H., Guez, A., & Silver, D. (2016, February 12). Deep Reinforcement Learning with Double Qlearning. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI '16: The 13th AAAI Conference on Artificial Intelligence.

Acknowledgments: Bradley Fulk for mentorship, CAL Fire, US Forest Service, San Diego FD, Menlo Park FD, and Orange County FD for valuable insight and advice