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Background Estimation of Ground Coverage Area (GCA) Size Grid Search for Altitude and Camera Angle Wildfire Detection Tests
e 66k fires burned 7.5M acres e GCA is the ground area that a single drone can patrol on a full charge e Use a grid search-based algorithm to find the optimal drone * Created simulation environment for testing using Microsoft AirSim
g . . [ . [
nationwide in 2022 - NIFC o Calculated from the size and number of Ground Coverage Cells (GCC), altitude and camera tilt angle delivering best wildfire detection (open-source simulator built on Unreal Engine) with virtual assets
e Annual total cost of wildfires which is the projection of the ground cell to a camera image * Below is a table of all 5 DCV models tested on FLAME with mAP50
. . . Algorithm 1 Grid search for altitude and camera angle | ti d th . . f t
in the U.S. ranges from $394 e When the camera faces directly downward at an angle 6 of -90- and altitude Inputs: Drone camem lens EOV in horizontzl @ and i vertical 5, Wildfire Gstection atc tireshold doug, €valuation and their unique reatures
to $893 billion - Cong ress JEC of A, the GCC width Wc & he|g ht H. are given by Wo— 9% A Olltpl.lt: Altltudf:, A and camera angle 6 producing wildfire detection rate > d,;, given greatest A . .
. . : 8= (1) Set wildfire location I + (0,0, 0) Model YOLOVS Faster R-CNN DETR EfficientDet RetinaNet
P bl D f. .t. o Where w; and h; are the IMmage width & hEIght . =2k /w while average detection rate d > d,;,, do
ropiem verinition . &= 4 A < Astart mAP50 0.913 0.916 0.748 0.663 0.763
] When 9 IS nOt _900, the drone needs to be placed C_'S’?E_:) Move drone to (¢$1¢y:A) calculated from equation (2)
e Current wildfire detection systems are ineffective at an offset for the camera to cover the same g el A ey P Smgleshot | Two-shot with Single-shot | o
. . . Al ggli-amera opts Vopts m y Uy with modiiie ; : ; Ingle-sho
o Stationary camera and sensor networks, satellite ground area as a down-facing camera R\Aﬂg'e‘) Set detection count d,, + 0 o CSPDarknot |  2Tegionof | Transformer on | with weighted Wiﬂlfzocal loss
o Limitations: adverse weather. limited view anales. uncertaintv due e Hori | d ical off 0 d ¢ van AN Ne 0 for:=1,2,...,N do Description 53 with mierest(ROL) | CNNibackbens | bixairoctional function to
: ' gles, y orizontal and vertical ofrset ¢z an y are given ' : Move drone to another location (z;,y;, A) in the GCC range and self atiantion pooling layer and feature pyramid | ddross class
to distance Speed of detection by- )e A N N Take a camera image and run wildfire detection Uniqueness : and region feed-forward network .
' . )81 . A. (Drone " . . : : mechanism and : imbalance
. . . %% Q ! it de) if wildfire detected and the actual wildfire is inside detection bounding box then ) proposal network (FFN) (BiFPN) ) o
e Drones/UAVs require significant human efforts due to manual by = —5 + Axtan(90 — abs(d) — =) 3 ; \\ | dyt = 1 feature E{;ﬁ? network (RPN) scaling method | TUrng training
. : : . .. .. N : 2 . networ
operations, impacting their efficiency and restricting usage 2 (2) YN A end“;i‘f
o Manual path p|anning, human piloting, Nno autonomous detection (;%, — 76 + A x tan(90 — &68(9) — 5) “‘1;‘ .. ga;cu}jt; a\f::lll'age detection rate d, = d,,/N e Selected YOLOVS8 had a mAP50 of 0.913 with YOLOvVS8 F1-Conf. Curve
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Previous Work o Where @ is the camera tilt angle (-90° to 0°) / Srae e e Groung Corerage o fraction of the next fastest, Faster R-CNN
. e R
from the horizontal,@ and £ are the camera ~. . ) kel A At ey e After transfer learning, the selected YOLOVS |
: : . . ST end while : :
horizontal and vertical field of view (FOV) = 7" return A, 1, 6o, dom was able to detect with a mAP50 of 0.90,
e Deep Computer Vision (DCV) for wildfire detection comparable to the performance on FLAME
o YOLOV3, V5, v/, v8, Reduce-VGGnet with optimized CNN, Coverage Path Planning (CPP) for Patrol Stage Multi-Drone Network d d . T
FireDETN, Efficient-B5 and DenseNet-201 End-to-End Experimental Tests
. . . . - i -Spi 1 - i I I Fan-shaped cell d iti Il ltipl . . . . .
e Deep Reinforcement Learning (DRL) for object tracking * Totraverse the GCA, an Energy Alﬁ::?érfnzp;i%?;ﬁ;iﬂ%mﬁmd o E-Spiral is the optimal CPP for R rones o share ona bage e Test setup: Placing 100 wildfires at random locations in the GCA and
o Actor-Critic methods, Deep Deterministic Policy Gradient (DDPG) Aware Spiral (E-Spiral) CPP model cell width W and beight £, a multi-drone network with = D A > evaluating end-to-end detection process for each fire from take-off to alert.
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: : continuous flight as the while d < d,,, do rian r n ir R sl
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: . . . rotation of the drone accounts i — outward for patrollin \
e No previous work has integrated all 3 into a single drone system (oo = ‘1_“:‘; e e G A <hared | P ) gb t G
. . . or all areas L T,y <Y~ He, ¢ e Ashared large drone base at |- Q-
that automates the whole operational process to deliver effective else if i = 1 then , J il
e . . . : e Starts at center GCC and returns to T1 & — We,y1 + y,d  d+ W, a fire outpost reduces base A e . Drone Base _ T
early wildfire detection with minimal human input , else if i — 2 then , , S ; SR 23
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Eng ineering Goal rone) atter completing the pat I (21,31, 4) notin wps then * Alldrone bases communicate | .~ T b T e Above is a screenshot of the full system in action with the functional
1: 451, . : Y . . . .
* The Ground Coverage Area (GCA) Append (21,31, 4) to wps to a central management | . take-off, spiral patrol, detection, and close inspection process
e Design and implement a system fully automating the 5-stage for one drone given its max battery o T OMEmScberdd module hosted on the cloud e Atthe rightis a table of the
Operational process for drone-based wildfire detection ﬂlght distance is constructed from 1+ 3ifi=0else i —1 |nfraStrUCtU e, fOrm|ng d C_S?Z_D SyStem'S results from the tests Altitude, A4 80 ft (from Grid Search)
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e Develop algorithms and models required in the system flowchart steps the number of GCCs | end while anlable and Eollaboratlve 1\ .. Path trained by o Inspection path planning | Camera angle. 8 45° (from Grid Search)
o -to- i ' i - o Determines patrol stage range  Return: wps rone networ I .
Conduct end-to-end simulation tests to validate the system design ! % *-DRL maxmizing used DDQN model which Detection Rate 0.00
) T . reward function trained faster than A2C
System Process Diagram . - - - = '\ N
y g i Deep Reinforcement Learning (DRL) for Inspection Stage Flight Control bei":?d‘i':g with similar results DDQN Loss 10.634
Take off: Fly from . . . . . . . Jd ! . )
@ Patrol/Detection: Fly along (7)base to ihe patrol e Using DRL for close-distance inspection stage maneuvers for confirmation and more details :
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il run Wil oofimal aifilude ® e Double Deep Q-Learning (DDQN) model with a memory tree Conclusion
) . . Return: Fly back t . . . . .
detection using treined A b basatar o Advantages: decoupled action selection and value estimation, more dynamic due to less
computer vision mode (p—) . . . ] ,
A S recharging once overestimation, and learns better from past episodes i
’/ Rattery s low * Model considers the current detection as an environmental state value driven by the reward =Bounding 'l' y = summary
: function for close-up inspection and better detection, given by: box height : S S LW e A2D2 enables a drone to emulate the heuristic operational procedure
= e Reward Components - DRL reward function Reward = ky Ry + kyR, + ks R, ’ | \ of a human pilot, involving searching, closely flying over for
- . . . Sy * 8 : § i & ' - : :
Drone Patrol a. Bounding box size ratio R, calculated by: R, = w"’ - hy : ; S confirmation, and sending alerts
Alituce Ground Coverage controls flight in z direction, coefficient of k, o ; e The system is a breakthrough innovation that significantly elevates
e ! 3] . . . . . .
Inspection: When , covered by one b. Bounding box distance ratios R, and R, from center calculated by: the efficiency and effectiveness of early wildfire detection
possible wildfire ¢ Eiiara finage . ) Y o
dg?ﬁgegégmfsger -{ k controls drone flightinx and y B = Diff, - Diff, System Architecture Future Work
the path controlled : directions, coefficients of k. and &, T w2 Y™ hy/2 o CONSi f 5 modules: I | path planni tion f imulati field ith £ :
by trained onsists of 5 modules: controller, patrol path planning, e Transition from simulation to field tests with support from CAL Fire
relm:-nlgcdeerrent Deep Computer Vision (DCV) for Wildfire Detection inspection path planning, detection, and alerting and local fire departments
A= $% Ground Coverage RIS : e Continue developing this system to make it a modularized platform
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* Aekts Grcswikirs on the FLAME open wildfire dataset Drone 115 prone 2!  pore § Module § remote sensing, geo-mapping, search and rescue, etc.
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